Geometry of Three Convex Bodies Applicable to ThreeMolecule Clusters in Polyatomic Gases

Taro Kihara ${ }^{1}$ and Kazunori Miyoshi ${ }^{1,2}$

Received May 27, 1975
An expression for the configuration integral for three overlapping convex bodies, which is a generalization of Hadwiger-Isihara's formula for two convex bodies, has been found. As an application of this expression, twoand three-molecule cluster integrals (or second and third virial coefficients) for polyatomic molecules in gases are discussed on the basis of a squarewell potential with convex cores.

KEY WORDS : Statistical thermodynamics of gases; intermolecular forces; nonspherical molecules.

1. INTRODUCTION

The equation of state of gases may be expressed in the form

$$
\begin{equation*}
P / k T=n+B(T) n^{2}+C(T) n^{3}+\cdots \tag{1}
\end{equation*}
$$

Here P is the pressure; n is the number density of molecules; k is the Boltzmann constant; and T is the absolute temperature. In this expression $B(T)$, $C(T), \ldots$, are called the second, third, \ldots, virial coefficients.

[^0]The equation of state can also be expressed in the form of power series

$$
\begin{equation*}
P / k T=\sum_{l=1}^{\infty} b_{l}(T) z^{l}, \quad n=\sum_{l=1}^{\infty} l b_{l}(T) z^{l} \tag{2}
\end{equation*}
$$

in which the fugacity z plays the role of a parameter. Here $b_{1} \equiv 1$, and $b_{2}(T)$, $b_{3}(T), \ldots$, are called the two-molecule, three-molecule, ..., cluster integrals. The following relationships hold between the virial coefficients and the cluster integrals:

$$
\begin{equation*}
b_{2}=-B, \quad b_{3}=2 B^{2}-\frac{1}{2} C, \cdots \tag{3}
\end{equation*}
$$

The l-molecule cluster integral $b_{l}(T)$ has $l-1$ zeros $(l=2,3, \ldots)$, each of which is located between two neighboring zeros of $b_{l+1}(T)$. The least zero of $b_{l}(T)$ decreases as l increases, and the accumulation point of these least zeros coincides with the critical temperature. ${ }^{(1)}$ For this reason we use $b_{3}(T)$, instead of $C(T)$, for comparison of theory with experiment.

The second virial coefficient is positive for $T>T_{\mathrm{B}}$ and negative for $T<T_{\mathrm{B}}, T_{\mathrm{B}}$ being the so-called Boyle temperature. It is convenient to define the volume b by

$$
\begin{equation*}
b \equiv\left(T \frac{d B}{d T}\right)_{T=T_{\mathrm{B}}}=\left(\frac{d B}{d \ln T}\right)_{T=T_{\mathrm{B}}} \tag{4}
\end{equation*}
$$

and consider the dimensionless quantities b_{l} / b^{l-1} as functions of T / T_{B}.
Figure 1 shows typical examples of the two- and three-molecule cluster integrals, which are obtained by the use of observed virial coefficients ${ }^{(2)}$

Fig. 1. Experimental values of b_{2} / b and b_{3} / b^{2} as functions of $T / T_{\mathrm{B}} . T_{\mathrm{B}}=408 \mathrm{~K}, b=$ $67.5 \AA^{3}$ for argon; $T_{\mathrm{B}}=323 \mathrm{~K}, b=52.1 \AA^{3}$ for nitrogen; $T_{\mathrm{B}}=517 \mathrm{~K}, b=174 \AA^{3}$ for carbon tetrafluoride.
and the relations (3). The law of corresponding states does hold well for b_{2}, but not for b_{3}. This fact indicates that the intermolecular potential functions for $\mathrm{Ar}, \mathrm{N}_{2}$, and CF_{4} are not similar, and that the three-molecule cluster integral is sensitive to the characteristics of the intermolecular forces.

The second virial coefficient $B(T)$ is given by

$$
\begin{equation*}
2 B(T)=\left\langle\int\left[1-\exp \left(-U_{12} / k T\right)\right] d \tau_{2}\right\rangle \tag{5}
\end{equation*}
$$

Here U_{12} is the intermolecular potential for the pair $(1,2) ; d \tau_{2}$ is the volume element occupied by the arbitrarily chosen "center" of the molecule 2 , and \rangle indicates the average with respect to the orientation of molecule 2 , molecule 1 being kept fixed.

The third virial coefficient $C(T)$ is given, under the assumption of potential additivity, by the expression

$$
\begin{align*}
3 C(T)= & \left\langle\iint\left(1-\exp \frac{-U_{12}}{k T}\right)\left(1-\exp \frac{-U_{13}}{k T}\right)\right. \\
& \left.\times\left(1-\exp \frac{-U_{23}}{k T}\right) d \tau_{2} d \tau_{3}\right\rangle \tag{6}
\end{align*}
$$

with the same notation.
The purpose of the present paper is to perform the integration for $C(T)$ analytically on the basis of a particular model of the nonspherical intermolecular potential.

2. MOLECULES WITH CONVEX CORES

For nonpolar polyatomic molecules, Kihara ${ }^{(3)}$ proposed an intermolecular potential function

$$
\begin{equation*}
U(\rho)=U_{0}\left[\left(\rho_{0} / \rho\right)^{12}-2\left(\rho_{0} / \rho\right)^{6}\right] \tag{7}
\end{equation*}
$$

which is similar to that of Lennard-Jones but with the variable ρ set equal to the minimum distance between impenetrable molecular cores. The core may take any shape as long as it is a convex body. By properly choosing the cores, the sizes and shapes of the molecules can be taken into account in a realistic way.

A merit of the core potential (7) is that the second virial coefficient $B(T)$ can be integrated analytically.

For the purpose of discussing both $B(T)$ and $C(T)$, it is appropriate to use a simpler model of the intermolecular potential: We assume, instead of (7), the square-well potential function

$$
U(\rho)= \begin{cases}\infty & \text { for } \rho<\sigma \tag{8}\\ -\epsilon<0 & \text { for } \sigma<\rho<2 \sigma \\ 0 & \text { for } 2 \sigma<\rho\end{cases}
$$

Here ρ is the distance between the convex cores; ϵ and σ are potential parameters. A parallel body of the core with thickness $\sigma / 2$, which will be denoted by core $+\sigma / 2$ in the following, represents the impenetrable part of a molecule. (A body formed by all points whose distances from the surface of a convex body A are smaller than or equal to ρ is called "the parallel body of A with thickness ρ " and is denoted by $A+\rho$.)

A convex body is characterized by its three fundamental measures: the volume V, the surface area S, and the measure M, which is the mean curvature integrated over the surface of the convex body (e.g., $M=4 \pi a$ for a sphere of radius $a ; M=\pi L$ for a thin rod of length L). For any convex body, the inequality $S \leqslant M^{2} / 4 \pi$ holds.

The fundamental measures of the parallel body core $+\rho$ are given by Steiner's formulas:

$$
\begin{aligned}
M_{\text {core }+\rho} & =M+4 \pi \rho \\
S_{\text {core }+\rho} & =S+2 M \rho+4 \pi \rho^{2} \\
V_{\text {core }+\rho} & =V+S \rho+M \rho^{2}+(4 \pi / 3) \rho^{3}
\end{aligned}
$$

in which, and throughout the present paper, M, S, and V indicate the fundamental measures of the core.

The second virial coefficient $B(T)$ for the potential (8) is a linear function of

$$
\begin{equation*}
x \equiv e^{\epsilon / k T}-1 \tag{9}
\end{equation*}
$$

which can be expressed in the form

$$
\begin{equation*}
2 B(T)=J^{(0)}-x J^{(1)} \tag{10}
\end{equation*}
$$

Here $J^{(0)}$ and $J^{(1)}$ indicate $\left\langle\int d \tau_{2}\right\rangle$ in (5) integrated over the regions $\rho_{12}<\sigma$ and $\sigma<\rho_{12}<2 \sigma$, respectively, ρ_{12} being the intercore distance.

The integrals $J^{(i)}$ can be evaluated on the basis of the Hadwiger-Isihara formula ${ }^{(3)}$ for systems of two convex bodies A and B. Keeping the body A fixed, and keeping the orientation of the body B also fixed, let us move B around A, keeping contact on the surface of A. Then, the locus of the "center" of B forms the surface of another convex body, named $A+B$. Its volume V_{A+B} averaged over the orientation of B is given by

$$
\begin{equation*}
\left\langle V_{A+B}\right\rangle=V_{A}+V_{B}+(4 \pi)^{-1}\left(S_{A} M_{B}+S_{B} M_{A}\right) \tag{11}
\end{equation*}
$$

where V_{A}, S_{A}, and M_{A} denote the fundamental measures of the body A. By virtue of this formula, $J^{(0)}$ and $J^{(1)}$ are given by

$$
J^{(0)}=\left\langle V_{\text {core }+\sigma+\text { core }}\right\rangle, \quad J^{(1)}=\left\langle V_{\text {core }+2 \sigma+\text { core }}\right\rangle-J^{(0)}
$$

in which

$$
\begin{aligned}
\left\langle V_{\text {core }+\sigma+\text { core }}\right\rangle= & (4 \pi / 3) \sigma^{3}+2 M \sigma^{2}+2\left[S+(4 \pi)^{-1} M^{2}\right] \sigma \\
& +2\left[V+(4 \pi)^{-1} M S\right]
\end{aligned}
$$

Here Steiner's formulas have been used. Finally,

$$
\begin{align*}
B(T)= & (2 \pi / 3) \sigma^{3}(1-7 x)+M \sigma^{2}(1-3 x) \\
& +\left[S+(4 \pi)^{-1} M^{2}\right] \sigma(1-x)+V+(4 \pi)^{-1} M S \tag{12}
\end{align*}
$$

The third virial coefficient $C(T)$ for our present model is a cubic function of x,

$$
\begin{equation*}
3 C(T)=I^{(0)}-3 x I^{(1)}+3 x^{2} I^{(2)}-x^{3} I^{(3)} \tag{13}
\end{equation*}
$$

Here $I^{(i)}$ indicate $\left\langle\iint d \tau_{2} d \tau_{3}\right\rangle$ in (6) integrated over the following regions:

$$
\begin{array}{lrrr}
I^{(0)}: & \rho_{12}<\sigma, & \rho_{13}<\sigma, & \rho_{23}<\sigma \\
I^{(1)}: & \sigma<\rho_{12}<2 \sigma, & \rho_{13}<\sigma, & \rho_{23}<\sigma \\
I^{(2)}: & \sigma<\rho_{12}<2 \sigma, & \sigma<\rho_{13}<2 \sigma, & \rho_{23}<\sigma \\
I^{(3)}: & \sigma<\rho_{12}<2 \sigma, & \sigma<\rho_{13}<2 \sigma, & \sigma<\rho_{23}<2 \sigma
\end{array}
$$

$\rho_{i k}$ being the intercore distance for the pair (i, k).
In order to evaluate the integrals $I^{(i)}$, we define a function $F(A, B, C)$ of three convex bodies A, B, and C. Keeping the body A fixed, and keeping the orientations of the bodies B and C also fixed, we let B and C move around over the configurations in which all the pairs $A B, A C$, and $B C$ overlap. Then the arbitrarily chosen "center" of B and the center of C generate together a six-dimensional domain. The six-dimensional volume of this domain averaged over the orientations of B and C is denoted by $F(A, B, C)$. In terms of this function, the $I^{(i)}$ are given by

$$
\begin{aligned}
& I^{(0)}=F(\text { core }+\sigma / 2, \text { core }+\sigma / 2, \text { core }+\sigma / 2) \\
& I^{(1)}=F(\text { core }+\sigma, \text { core }+\sigma, \text { core })-I^{(0)} \\
& I^{(2)}=F(\text { core }+3 \sigma / 2, \text { core }+\sigma / 2, \text { core }+\sigma / 2)-I^{(0)}-2 I^{(1)} \\
& I^{(3)}=F(\text { core }+\sigma, \text { core }+\sigma, \text { core }+\sigma)-I^{(0)}-3 I^{(1)}-3 I^{(2)}
\end{aligned}
$$

3. THE CONFIGURATION INTEGRAL FOR THREE OVERLAPPING CONVEX BODIES

The function $F(A, B, C)$ is a generalization of $\left\langle V_{A+B}\right\rangle$ to a system of three convex bodies.

In a particular case where one of the convex bodies, say A, is much larger than the other two, $F(A, B, C)$ should reduce to $V_{A}\left\langle V_{B+C}\right\rangle$ or, by making use of (11),

$$
V_{A}\left[V_{B}+V_{C}+(4 \pi)^{-1}\left(S_{B} M_{C}+S_{C} M_{B}\right)\right]
$$

Taking this asymptotic form into account, we let

$$
\begin{align*}
F(A, B, C)= & V_{A} V_{B}+V_{A} V_{C}+V_{B} V_{C} \\
& +(4 \pi)^{-1}\left[V_{A}\left(S_{B} M_{C}+S_{C} M_{B}\right)+V_{B}\left(S_{A} M_{C}+S_{C} M_{A}\right)\right. \\
& \left.+V_{C}\left(S_{A} M_{B}+S_{B} M_{A}\right)+G(A, B, C)\right] \tag{14}
\end{align*}
$$

In another particular case where the three convex bodies are spheres of radii a, b, and $c, F(A, B, C)$ is calculated to be

$$
\begin{aligned}
F(A, B, C)= & (4 \pi)^{2}\left[3^{-2}\left(a^{3} b^{3}+a^{3} c^{3}+b^{3} c^{3}\right)\right. \\
& \left.+3^{-1} a b c\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)+a^{2} b^{2} c^{2}\right]
\end{aligned}
$$

or

$$
G(A, B, C)=(4 \pi)^{3} a^{2} b^{2} c^{2}
$$

Among monomials of the fundamental measures which become $(4 \pi)^{3} a^{2} b^{2} c^{2}$ for spheres, the smallest is $S_{A} S_{B} S_{C}$ and the largest is $(4 \pi)^{-3} M_{A}{ }^{2} M_{B}{ }^{2} M_{C}{ }^{2}$. Hence it is expected that

$$
\begin{equation*}
S_{A} S_{B} S_{C} \leqq G(A, B, C) \leqq(4 \pi)^{-3} M_{A}^{2} M_{B}^{2} M_{C}{ }^{2} \tag{15}
\end{equation*}
$$

Expression (14) with (15) is a generalization of the Hadwiger-Isihara formula. Although we are not able to give a mathematical proof of relation (15), we have ascertained that it is correct. Some examples follow.

In case the body C is much smaller than A and B, which means $S_{C} \ll$ $\min \left(S_{A}, S_{B}\right)$ and $M_{C} \ll \min \left(M_{A}, M_{B}\right), F(A, B, C)$ is equal to $\left\langle V_{A+B}\right\rangle\left\langle V_{B+C}\right\rangle$ up to the terms in

$$
\begin{aligned}
V_{A} V_{B}+(4 \pi)^{-1}\left(V_{A} S_{B}+\right. & \left.V_{B} S_{A}\right) M_{C} \\
& +(4 \pi)^{-1}\left[\left(V_{A} M_{B}+V_{B} M_{A}\right) S_{C}+(4 \pi)^{-1} S_{A} S_{B} M_{C}{ }^{2}\right]
\end{aligned}
$$

Namely, $G(A, B, C)=(4 \pi)^{-1} S_{A} S_{B} M_{C}{ }^{2}$ satisfies the inequality (15).
Figure 2 shows the result of a computer calculation by the Monte Carlo method for a system of three identical "spherocylinders," which are parallel bodies of a rod or a disk type.

Fig. 2. The ratios $F^{+} \mid F$ and $F^{-} \mid F$ for three identical spherocylinders. Here F^{+}indicates the upper bound of F in which $G(A, B, C)$ is replaced by $(4 \pi)^{-3} M_{A}{ }^{2} M_{B}{ }^{2} M_{C}{ }^{2} ; F^{-}$represents the lower bound in which $G(A, B, C)$ is replaced by $S_{A} S_{B} S_{C}$.

In application to molecules, the arithmetic mean of the upper and lower bounds can be used as an approximation to $G(A, B, C)$.

4. COMPARISON OF THEORY WITH EXPERIMENT

As an example we consider CF_{4} molecule, choosing a regular tetrahedron defined by the four fluorine atoms as its core. For a regular tetrahedron inscribed in a unit sphere, the three fundamental measures are

$$
\begin{aligned}
& V=8 \sqrt{3} / 27=0.51320, \quad S=8 \sqrt{3} / 3=4.61880 \\
& M=2 \sqrt{6} \cos ^{-1}(-1 / 3)=9.36015
\end{aligned}
$$

By making use of $1.36 \AA$ for the $C F$ bond length, we have $V=1.29 \AA^{3}$, $S=8.54 \AA^{2}$, and $M=12.73 \AA$ for the core of carbon tetrafluoride. From experimental results for the second virial coefficient and expression (12) we obtain

$$
\sigma=2.28 \AA \quad \text { and } \quad \epsilon / k=157 \mathrm{~K}
$$

In Fig. 3, the calculated two- and three-molecule cluster integrals are

Fig. 3. Calculated cluster integrals for the square-well potential with convex molecular cores. The core is a regular tetrahedron for CF_{4} and a point for Ar.
compared with experimental values. For comparison, corresponding curves in the case of a point core are included.

Figure 3 also shows that the least zero of $b_{3}(T)$ divided by T_{B} increases as the relative size of the core increases. Since the critical temperature T_{c} is the limit of such least zeros of $b_{l}(T)$ for $l \rightarrow \infty$, the ratio T_{c} / T_{B} is expected to increase as the relative size of the core increases. This is in accord with experimental results, which are shown in Fig. 4.

Fig. 4. The ratio T_{c} / T_{B} of the critical to the Boyle temperatures, and the ratio T_{3} / T_{B} of the least zero of $b_{3}(T)$ to the Boyle temperature. Here "number of atoms" indicates the number of atoms, excluding hydrogens, in a molecule.

5. CONCLUDING REMARKS

For any convex-core potential of the form (8), there exists a sphericalcore potential

$$
U(\rho)= \begin{cases}\infty & \text { for } \rho<\sigma^{\prime} \\ -\epsilon<0 & \text { for } \sigma^{\prime}<\rho<2 \sigma^{\prime} \\ 0 & \text { for } 2 \sigma^{\prime}<\rho\end{cases}
$$

which gives the same second virial coefficient as $B(T)$ given by (12). Here ρ is the distance between the new spherical cores, σ^{\prime} is a new parameter, and ϵ is the same as before.

The third virial coefficient calculated for this spherical-core potential is expected, and in fact confirmed, to be a good approximation to $C(T)$ given by (13). (For a very small core, or $M^{2} / 4 \pi \sigma^{2} \ll 1$, this approximation is exact; in this case, the radius of the new spherical core is $M / 4 \pi$, and $\sigma^{\prime}=$ σ.

Discussions about two- and three-molecule cluster integrals on the basis of a more realistic intermolecular potential (7) become possible by virtue of this kind of approximation. Details will be given elsewhere.

REFERENCES

1. T. Kihara and J. Okutani, Chem. Phys. Lett. 8:63 (1971).
2. J. D. Dymond and E. B. Smith, The Virial Coefficients of Gases, Clarendon Press, Oxford (1969).
3. T. Kihara, Rev. Mod. Phys. 25:831 (1953); Advan. Chem. Phys. 5:147 (1963).

[^0]: ${ }^{1}$ Department of Physics, Faculty of Science, University of Tokyo, Tokyo, Japan.
 ${ }^{2}$ Present Address: Department of Information Science, Faculty of Science, University of Tokyo, Tokyo, Japan.

